Definitions of fundamental irreps and generation functions. More...
#include "inc/rep/rep.h"
Namespaces | |
namespace | syten |
Syten namespace. | |
Functions | |
Rep | syten::genRepNil (Fermionic ferm=Fermionic::Never) |
Generates the sole irrep of Group::Nil, the placeholder for no symmetries. More... | |
std::vector< Rep > | syten::genReps (Index number, Rep const &start) |
Generate a specific number of unique irreps starting from the specified irrep. More... | |
std::vector< Rep > | syten::genRepsSU2 (Index number, char phys='S', Fermionic ferm=Fermionic::Never) |
Generate a specific number of unique \( SU(2) \) irreps with the specified physical symmetry description. More... | |
std::vector< Rep > | syten::genRepsSU3 (Index number, char phys='C', Fermionic ferm=Fermionic::Never) |
Generate a specific number of unique \( SU(3) \) irreps with the specified physical symmetry description. More... | |
std::vector< Rep > | syten::genRepsU1 (RDef start, Index number=0, char phys='c', Fermionic ferm=Fermionic::Never) |
Generate a specific number of unique \( U(1) \) irreps with the specified physical symmetry description. More... | |
Rep | syten::genRepSU2Fundamental (char phys='S', Fermionic ferm=Fermionic::Never) |
Generate the \( SU(2) \) fundamental irrep of the specified physical symmetry. More... | |
Rep | syten::genRepSU2Vacuum (char phys='S', Fermionic ferm=Fermionic::Never) |
Generate the \( SU(2) \) vacuum irrep of the specified physical symmetry. More... | |
Rep | syten::genRepSU3Fundamental (char phys='C', Fermionic ferm=Fermionic::Never) |
Generate the \( SU(3) \) fundamental irrep of the specified physical symmetry. More... | |
Rep | syten::genRepSU3Vacuum (char phys='C', Fermionic ferm=Fermionic::Never) |
Generate the \( SU(3) \) vacuum irrep of the specified physical symmetry. More... | |
Rep | syten::genRepU1 (RDef n=0., char phys='c', Fermionic ferm=Fermionic::Never) |
Generate a \( U(1) \) irrep. More... | |
Rep | syten::genRepZ (RDef n, RDef m=0., char phys='k', Fermionic ferm=Fermionic::Never) |
Generates an irrep m of Z/n. More... | |
Definitions of fundamental irreps and generation functions.