
inline 
Checks if a
and b
can be combined additively into a single block.
This is possible if either all CGC spaces are parallel or all but one CGC spaces are parallel and the reduced tensors are parallel.
In the former case, the reduced tensors will be added elementwise (after scaling to make the CGC spaces identical), in the latter case the nonparallel CGC space will be added elementwise (after scaling). That is, if we have:
\[ m_a \otimes c_{a_1} \otimes c_{a_2} + m_b \otimes c_{b_1} \otimes c_{b_2} \]
and \( c_{b_1} = f_{c_1} c_{a_1} \) and \( c_{b_2} = f_{c_2} c_{a_2} \) , with \( f_x \) scalar and real, we can instead write:
\[ \left[m_a + \left(m_b f_{c_1} f_{c_2}\right)\right] \otimes c_{a_1} \otimes c_{a_2} . \]
Similarly, if say \( m_b = f_m m_a \) and \( c_{b_2} = f_{c_2} c_{a_2} \) , we have
\[ m_a \otimes \left[c_{a_1} + \left(c_{b_1} f_m f_{c_2}\right)\right] \otimes c_{a_2} . \]
If more than one of the tensors are nonparallel, returns false. If the above rewriting can be done, it is done with the result in a
, b
set to zero and a return value of true.
References abs(), addScaled(), syten::TensorBlock< rank >::c, closeThreshold(), syten::TensorBlock< rank >::eqTrans(), syten::GenericDenseTensorImpl::GenericDenseTensor< rank, Scalar >::is_standard(), isParallel(), isZero(), syten::TensorBlock< rank >::isZero, syten::TensorBlock< rank >::m, syten::GenericDenseTensorImpl::GenericDenseTensor< rank, Scalar >::make_standard(), std::move(), normSqd(), real(), sqrt(), syten::GenericDenseTensorImpl::GenericDenseTensor< rank, Scalar >::standard(), SYTEN_ASSERT, SYTEN_ASSERT_DEBUG, and SYTEN_SMALL_THRESHOLD.
Referenced by syten::Tensor< rank >::reduce().